“Consequently, the true value of the concentration of the Polyox solution in the main experiments, based
on our determination of the effective drag reduction in flow of the solution in pipes of different diameters, is

¢ = ¢, (c/Cy)s,=209% = 1074.0.07 = 7-107% g/cm®,

This result does not conflict with the expected concentration of the Polyox solution (¢ < 8- 1078 g/ cm3) when the
inevitable material losses associated with the particular technique for preparation of the solution are taken
into account.

NOTATION

d, pipe diameter; t, flow temperature; ¢, weight concentration of polymer solution; v, kinematic vis-
cosity of water; Vps kinematic viscosity of polymer solution; n = v_/v, relative viscosity of polymer solution;
p, density of water; Ty, Tp, tangential frictional stresses at the wall in pipe flows of water and polymer solu~
tion, respectively; T, threshold tangential frictional stress at the wall; vg, average velocity in terms of mass
flow of liquid in the pipe; Ay, A, coefficients of fluid friction in pipe flows of water and polymer solution,
respectively; Re, Reynolds number; c,, weight concentration of polymer solutionatt, °C, for 60% drag reduction;
S= (Tw-—Tp)/TW, drag reduction at vg = const for flow of polymer solution; S;, maximum drag reduction for
flow of a polymer solution of concentration c; ¢y, characteristic concentration of polymer solution for maxi-
mum drag reduction S; = 60%.
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PERISTALTIC FLOW OF A NON-NEWTONIAN
VISCOPLASTIC LIQUID IN A S1LOT CHANNEL

V. I. Vishnyakov, K. B. Pavlov, UDC 532,54:; 532.135
and A, S. Romanov

The "narrow-band" asymptotic method {5] has been used to consider the peristaltic flow of a visco-
plastic medium ina slot channel, It is found that the mode of flow differs substantially from that
in a channel with rigid walls when the axial pressure gradient is small.

Considerable attention has recently been given to the flow of liquids in channels with elastic walls in
connection with many aspects of biomechanics [1], with particular interest attaching to non-Newtonian fluids
with anomalous mechanical properties [2]. One class of non-Newtonian liquid is that of nonlinear-viscosity
media, for which the simplest rheological law is one that relates the stress tensor deviator s;; to the strain-
rate tensor fij- In particular, a viscoplastic liquid is a medium with nonlinear viscosity, for which the
rheological law can be put in the following form [3]:

8= 2[0+ w/(2fsfi) 1y for (28:8:)'° 2 o,

fi]' =0 for (2Sijsij)l/2 <TO'

@)

Here we consider the peristaltic motion of a viscoplastic liquid (1) in a slot channel with elastic walls;
in the general case, the peristaltic flow of the medium is due to the joint action of the deformable walls and a
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Fig. 1. Scheme for the peristéltic flow,

pressure gradient along the axis, In particular, such a flow is considered for a non-Newtonian liquid with
power-law rheological behavior, which resembles a viscoplastic liquid in being a medium with nonlinear vis-
cosity [4].

We assume that the deformation of the elastic wall is described by a traveling-wave equation having a
wavelength much greater than the mean size of the channel; there exists a frame of reference moving along
the axis x of the channel with a speed W relative to the wall in which the deformable wall is described by a
time-independent equation y = f(x). This frame willbe called the "moving" frame, to distinguish it from the
"immobile" one, inwhich the wall has no axial displacement. I the flow of the viscoplastic liquid in the "moving"
system is independent of time, then the peristaltic motion will be said to be of steady-state type, and this is
the only case considered here,

A distinctive feature of the steady-state peristaltic motion for a viscoplastic fluid is that there may be
zones with different forms of analytical description for the velocity distribution: a region of viscous flow near
the channel walls, y(x) = y = i), —f(X) = y = —y(%), and a quasisolid zone —y (X) = y = y(x), which lies at
the center (Fig. 1), with the speed in the quasisolid zone everywhere constant. If we use the characteristic
quantities h — the mean half-width of the channel — and the speed W, then the equations of motion in the
moving frame that describe the flow in the viscous zone are as follows in dimensionless form in terms of the
stream functiony (dy/dy and —dy /dxare, respectively, the x and y projections of the velocity):

op O Gy Py  dp o+ 1 oAy
Jy 0xdy ox Oy* ox Re 9y
2, 2, 2 Y
T e e B | @
Re 0x O0x0y oy oy? ox?
op oy oy _ dp 1 0AY
dy  Ox? Ox Ox0y Oy Re 0x
I PR e I m—l(ﬁ‘h_ﬂ”, (3)
Re dy 0xdy Ox _ Oy? O0x?

where

- 2 2 2 2, 271/2
0x0y oy? Ox?
where Re = yWh/7y is Reynolds number and » = 7¢h/nW is the plasticity parameter., We eliminate the pres-

sure p from (2) and (3) to get

dp oAy Op oAy _ MMy ( PR R azg)

dy Ox ox Oy Re + Re Oxdy Ox0y oy? Ox?

N

(4)

The symmetry of the flow allows us to restrict consideration to the regions y = 0 and to write conditions
that should be met by ¢ at the boundaries of the viscous-flow zone v (x) = y = £(x) in the "moving" system:
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Fig. 2, Variation in the minimal value of the plasticity parameter »* with the flow rate Q for

the following cases: 2rRe/A = 0: 1) ¢ = 0.05; 3) 0.15; 5) 0.25 and 27Re/A = 0.1: 2) 4 = 0.05; 4)

0.15; 6) 0.25, ‘
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Fig. 3. Waveforms arising at the surface of the quasisolid zone for the following values of
the parameters: a = 0,05; » = u*: 2rRe/A = 0 for: 1) u = —3; 2) 1.5 and 2rRe/A = 0.3 for: 3)
u=—3; 4) 1.5; 5) 0; 6) 1.5. '

| ooy, | 4 (5)
3 lio 0x iy dx
i S, ) —o, | _, (6)
il 0x® |/ lyixn) Y Iy
| _, )
0x  lyn

Here u = U/W is the dimensionless velocity of the quasisolid zone [note that there exists also the
boundary condition (8 %/8 xay)ly (x) = 0, but this can be shown to follow from (6) and (7)].

The boundary-value problem of (4)-(6) may be solved by the "narrow-band" asymptotic method [5, 6]; we
make the change of variable x— &x, in which &€ is a small parameter that characterizes the narrowness of a
"band," for instance, the ratio of the mean half-width of the channel to the wavelength of the deformation of the
walls. Then this parameter € appears in all the above equations and boundary conditions, which enables us to
solve (4) as an asymptotic expansion with respect to €:

Y= wE gy V= i & ®8)
=0 i=0

The zeroth approximation 3, may be found for the viscous zone via the equation

M _o, (9)
oyt
which must be solved subject to the boundary conditions of (5) and (6), which take the following forms, re-
spectively, in the zeroth approximation:

M| ., ow| _d
0y lfx Ox iy dx (10)
P | T
y® lyin) 9y |vin)

It is clear that the function y; = Ciy?’ + Czy2 + Cgy + Cy3 Cy = —(u+ 1)/3 (yo-—i)z; C,; = —3Cyyy; C3 = —1—3Cf(f—
2v0); Cy = —CIP—szZ—C3f + const is a solution to (9) that satisfies (10).

We use the following to determine the first approximation:

Py _ 'Re( Oy Py O P )

- ?

oy 0y 0x0y* Ox Oy
o, — %, = Oy | = Oy =0
9y i 0x it oy? lv(x) )

P, = Coy® -+ Cef + Coy + Cy +-Re S(x, y),
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Fig. 4. Pressure gradient averaged over a
period Re < 8p/8x > as a function of the flow
rate Q for 2nRe/A = 0.1; 1) a = 0,05, % = 5; 2)
a = 0.05, » = 10; dashed linea = 0, » = 5 and
10.

where S (X, y) is a particular solution to the corresponding inhomogeneous equation, which is not given on
account of its cumbersome form;

¢, _Re[ S ) S =S (1) ]_ (2c1v1

3(vo—1) 3(p—)? Yo—10
C, — — 326— 8" (x, ¥s) — 3C;7 — 3Cshg:

C, = ReliS" (%, 1) —S' (x, Nl —3C4f (F — 2vo) + 6Conifs
Co=—ReS(x, f)—xf —Cf* —Cifs

S (x, ) , a8 (x, ¥) )
S (x, i=—"2— 5 S v=—"7T"" ;
tx 1) oy f(x) ’ dy V(%)
RS (x, y) " _ *S(x, 9)
S, fl=—7] ; S yw=—F1—"" .
G D o F(x) ’ ay* - vl x)

From the remaining unused condition in (7) we get

w= (52 _O( dF + 70(0);

{

S (2, 1) (o — V2 —% (S (e, 1) + 28" (5, 7o)l (ho—D)

cp[-

3 Pl
= d
T1 u+1S

0

+S(x, ) —S(x N} +7.(0)

where v,(0) and vy,(0) are constants of integration; we put v,(0) = y(0) to get v,(0) = 0, while the undetermined
constant y,(0) can be found from the equilibrium condition for the guasisolid zone, which when applied to the
part of that zone between the sections x and x + 27 gives the following expression:

x+27

dy w2 o
APy (x) = jp(x, ) I dx + Re sign o7

X

Here AP is the pressure difference in the quasisolid zone, while p(x, v) is the pressure in the viscous zone

Pt

fory=v(x); itis clear that we can always state a value x = x* guch that px, v) ? dx =0, and we then
X
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suppose that the pressure differences between the x* and x* + 2x section are equal for the quasisolid zone and
the viscous-flow one, which gives the desired relationship between y,(0) and % in the form

op ¥ v _('tu +1  dx

% = — sign ,
7 3 (—0N""

where the value y * = y (x*) is defined by the condition

x‘-{;‘zn d x d
X ¥ dx Sv d = 0
J* dx “ (vo—1P

This asymptotic solution was used in numerical calculations for the particular case where the deforma-
tion of the elastic walls is described by

f(x) =1-Facos 2ax/A O<<a<).

The results showed that there is a minimum value for the plasticity parameter w* such that y (X) becomes
zero at certain points in the channel; i, e., thequasisolid zone "breaks up" for specified values of 4, Re, A, and
the dimensionless flow rate Q; Fig. 2 shows ®* in relation to the definitive parameters.

Figure 3 shows the style of the waves at the surface of the quasisolid zone in relation to the velocity u
for the case n = n*; even small deformations of the elastic wall can produce states of flow in the viscoplastic
medium such that the wave amplitudes at the surface of the quasisolid zone are close to the characteristic
size of the channel (curve 4 in Fig, 3).

Figure 4 shows the pressure gradient averaged over a period Re < 9p(y)/6x> in relation to the flow rate
Q and the plasticity parameter % for ¢ = 0.05 and 2nRe/A = 0.1; if < 8p/8x < 0, the medium flows in the positive
direction of the x axis, while for <ap/0x > > 0 it flows in the opposite sense, The dashed line in Fig. 4 cor-
responds to flow in a channel with rigid walls. A viscoplastic medium can flow in such a channel only if
Reldp/ox| > n, whereas in the case of a channel with elastic walls there is no such restriction. The dis-
continuity in the region Q = —1 is due toa "breakup" of the quasisolid zone and formation of a mode of flow
essentially different from that considered above.

NOTATION

X, y, Cartesian coordinates; 7, yield stress; p, density; 5, dynamic viscosity; W, phase velocity of de-
formation wave; h, mean channel half-width; §, stream function; Re, Reynolds number; ®, plasticity param-
eter; 8ij, stress-tensor deVi_ator; fij, strain-rate tensor; U, ouasisolid zone velocity; u, dimensionless
quasisolid zone velocity; ¢, amplitude; A, wavelength; p, pressure; &, small parameter; Q, flow rate.
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